Herman # Automation

‘We boost your efficiency.

ABB ACA450 translation to AC800M code

by easy web-tool that saves you time

Ampl2m conversion tool was developed during real migration projects to simplify migration of ABB Advant Master
AC400 family controllers. AC450, AC410, MP200, AC110, AC160, AC70, AC80, APC are supported.

Manually translating AC450 applications to AC800M can be very challenging and time-consuming. Manually
translating a single Controller can take 6 months or even more. Typical challenges of AC450 translation are:

AC450 Control application is usually quite complex containing thousands of pages of logic

Control programs may be written in complex way that contains undocumented so-called “hidden terminals”
of database elements, which makes it difficult to understand the logic and is therefore difficult to translate

Programs using MMC-IND or GENxxx PC elements

Programs using special libraries like RMC/RPC, APC, QCS/1190

Programs utilizing Type Circuits or User defined PC elements (UDPCE)

Programs written deliberately in a tricky way, e.g. if the logic depends on the execution order and timing of
reading and writing DB elements

Logic containing DB terminals not available in AC800M, like :SELECTED

Sequence part translation to SFC requires extensive experience to prevent bad surprises during
commissioning

The Ampl2m tool cannot do a 100% complete AC450 conversion, but it can significantly reduce engineering efforts
and prevent human errors. The Conversion tool can save up to 95%+ of working hours, based on experience. The
Unconverted signals and functions, shown in red in ACB00OM code, should be fixed manually.

Based on author’s experience in many projects already commissioned, it is really worth using the conversion tool to
reduce all that exhaustive manual migration.

Core Benefits

Automated conversion can save hundreds of working hours per each Advant CPU

Conversion tool is easy-to-use and available on-line 24/7

Prevents human errors

Conversion process is interactive thus under your control

Pulp & Paper Library / Standard AC800M libraries / UserLib / any libraries may be selected for conversion
Any library can be used in the conversion by instantiating unfolded Diagram Templates, see Step3 conversion

Converter utilizes hundreds of SW solutions integrated into one common platform, verified in successful
projects and developed based on a long-term experience in AC450 & AC800M programming

Converted code is efficient in terms of CPU load, easy to understand and free from any complex nested
structures

Conversion tool can handle even very complex applications
Cost-saving in terms of tag count

Original logic can be converted to CBM Programs, Single Control Modules or Control Diagrams

e Diagram Templates can be utilized in converted Diagrams, either folded or unfolded, similar like Type Circuits
in Advant systems

How does it work?

Conversion tool is built as a database application hosted on a Virtual private server (VPS) . It is available as a web
service at ampl2m.com and accessible through a simple web interface, ready for instant conversion. Just log in,
upload source files and press Analyze and Convert button. Converted programs are available for download within

minutes.

Upload

Note: Max. 1 PC program shall be converted at a time.

The output text files, available for download in “Output files” section, contain all the logic, variables, data types and
constants ready for import into 800xA CBM or Compact Control Builder. The import is done using a short VB script
using the ABB Open interface of Control Builder.

Conversion is subject to payment or the conversion tool can be used in demo mode, producing only a few pages of

converted logic.

Overview of Conversion workflow

: Step 1
Input files: Firstly all PC programs will be

N converted to SCMs
AAX é Step 2
DBT N Then SCMs in TXT files will be
T$S o é converted to Diagrams
e steps (opienal)

A Diagram types will be instantiated
unfolded in Diagrams

CBM or CCB

e e — e et

Diagrams to be imported by
,CB Xml Import/Export“ tool”

o

Additional'mapping
using CBM Diagram

Output TXT files Templates
Diagrams == HHEEL For any PC element /FB|
1 file per R - [including UDPCs
Converted PC program @ ProiLib 1.0-0
W, Connected Libraries
= ¥ Diagram Types
FB f D]a -5 0SC_B ?cn_zalg?jam,ms Ptn_:;:;;;:;mm
grams Types to be exported - eal_to fmectd ol | A

An example of pallaie = = ==
to FBDG XML —w B o — Wi owm
> ype M OSC-B mapping CE} I

Containing also Templates in override
Geagram types

Input files

AAX files to be exported from Function Chart Builder (FCB). AAX names should be in format generated by
FCB, e.g. AC112201.AAX, it means PC program PC22 of node AC11.

DBT file is a “Export DB Section” file from FCB containing all DB elements including all their parameters. Only
1 DBT file can be uploaded for one PLC containing all DB Elements. Make sure “Include Headline with DB
Terminal Names” is checked (by default).

FBDGtype.XML file is needed just for a conversion to Diagrams. It should contain export of all necessary
libraries linked to the Application to be used as a destination of the converted logic in Control Builder (CBM).
FBDGtype. XML can be exported from CBM by means of “CB XML Import/Export tool” , a small exe
application to be used in the engineering station of 800xA along with CBM.

&5 CB XML Import/Export tool - [o =T

Application name ACT1_1000 CB Libraries
opt. Import/Expart root Library name:
Export only SCh/Diagram: [-amUnp_AC11_PC13_260 Expart anly FB/CM/DT: ,7

export Ch-s w/o glob.vars | import Ch-s from files [™ Ovenwrite existing types

axport Chl-3 with alob.vars [Skip importing Signals axport FB types | import FE types from file ‘

i i import from filE
export Diagrams 4. JMBOIL LAAAmE from flg. 3 aport CM types | impuart Ch ypes from fle ‘

[~ export to Unicode file

[e export Diagram types | |mpullD\ag|.Istsfr.h\e‘

expoit Data types | import Data types r.file ‘

export FB/Diagr. Types from all Libs for Ampl2m toal ‘

Progress: |

Replace Application name from ariginal:
impat =ML fr.TexstBox ’N‘IZi

RTA.BAX (optional) is a database backup file from existing RTA board on site. If RTA backup is uploaded, the
conversion tool creates automatically RTA init Control module in the first page of each Diagram. RTA Init CM
initializes RTA structure containing all Treatment numbers used in the converted AC450. Treatments are
linked automatically to Alarm/Event definitions in Diagram Templates.

TCS files (optional) contain Type circuits (Templates or Typicals) to be excluded from converted logic and to
be replaced by one block (Function block or Diagram Type)

Example of Input files section:

AC113301

293
4.7

AC113501

s
T ACI13407
I 126
=

AC113601 136
~ AC118001 2513
™ AC119801
r LASTS801

I RTA

1159
04
4238

B2z E: 22 i

ACTY 1643

g

L FBDGtype 6754.4

a4

Output files
All Output files are generated by the conversion with extension .TXT.

e Stepl converion creates TXT files containing Single Control Modules (SCM). Example of the file name:
AC11 _PC14 1510 1052 _12tags.TXT, which means PC14 has been converted, it can contain several SCMs for
different cycle times, conversion done on 15" October at 10:52. The file contains 12 objects with names.

o SCMs can be imported to CBM as SCMs or as Programs according to selection in the import script

o No need to import SCMs to CBM in case of conversion to Diagrams. SCMs work as an intermediate
step for conversion to Diagrams in Step2.

e Step2 conversion from SCM to CBM Diagrams creates file names like Diagram_AC11_PC12.TXT. One TXT file
contains all Diagrams of different cycle times of 1 PC program, in this example PC12.

If any of the Diagram Template included in FBDGtype. XML file match PC element call-names, these Diagram
Templates will automatically override predefined mapping in the conversion tool and be used instead of the
mapped Function blocks of PP Lib/UserLib. The names of the Input/Output parameters must match the PC
element Input/Output names. Dash “-“ character in PC element’s call name or in Inputs/Outputs to be

replaced with Underline “_” characted in parameter names of Diagram Templates.

Diagram Templates work in converted Diagrams in a similar way to Type Circuits (TCS) in Advant systems.

e Step3 conversion is used to unfold Diagram Templates (DT) so that the internal logic of the Diagram
Template is inserted/instantiated in the Diagram in place of the original instances of Diagram Template. A
Diagram Template can contain multiple pages, but it is recommended to limit internal logic to only 1 page.

o DT to be unfolded must contain a local bool variable named “Unpack” with Initial value=true

o Name of DT (e.g. DOC) to be used in the DT’s inner logic as prefix in names of Parameters, Variables,
Control modules, Function Blocks or even Diagram instances inside Diagram Template, so that the DT
name will be replaced with current object name linked to the parameter Name of DT.

For example: “DOC_IPar” name of structured variable will be instantiated as “[ObjectName] _IPar” in
Diagram, etc...

o For Step3 conversion, it is necessary to use Library selection “1” in the Settings section
1 - basicLib, controlLibs & userLib A

o Example of the file generated by Step3 conversion: DiagramUnp_AC11_PC12.TXT

r DiagramUnp_AC11_PC17 TXT 146

L DiagramUnp AC11_PCi4 TXT 204.1

L Diagram_AC11_PC17 ™T 86.9

L Diagram_AC11_PC14 ™T 1173

L Diagram_ AC11_PC12 ™T 519.7

[C Diagram_AC11_PC11 ™T 927 l
C Diagram_AC11_PC7 ™T 3191

C AC11_PC80.1610_1023 5 TXT 963.7

2tags
C AC11_RTAMapping (T 287.4
F ALl BCOg 130 Js08 20 - L E S d -

Security, Privacy

We are committed to protect your data. We take the protection of your personal data very seriously. We are using
SSL encrypted connection (https:), so third parties do not have access during transmission of data between your
browser and our Virtual Private Server (VPS). You can recognize an encrypted connection in your browser’s address
line when it changes from http:// to https:// and the lock icon is displayed in your browser’s address bar.

Our VPS is located in the Data center of VPS Provider in Germany secured by DDoS protection and Firewall. Your
Input and Outputs files are stored inside the database in our VPS. External connection from internet to our database
is disabled, therefore the database can be accessed by Conversion service only . Remote access to VPS is secured by
SSL Private Key thus restricted to Herman-Automation only.

Herman-Automation does not share with third-party nor sell to third-party Your personal data or Your files. Read our
Terms&Conditions for further information.

What is the efficiency of Ampl2m conversion tool ?
How much manual work is needed after automated conversion ?

Automatic conversion can save up to up to 95% of manual AC450 translation efforts, depends on how original code is
written. If original control application is built using standard functions then automated conversion covers almost all
engineering efforts regarding Logic conversion.

According to opinion of many ABB specialists complete AC450 to AC800M automated conversion is not possible due
to significant difference with application handling between AC400 and AC800M. Manual post-conversion job and
experience are important parts of the conversion process.

Amount of necessary manual programming after automated conversion depends on the way how original code is
written:

e Automated conversion produces nearly working AC800M code if original logic uses standard features of
AC450 function blocks and DB elements —in case standard MOTCON, VALVECON, PIDCON, MANSTN, SEQ are
used

e On other hand converted code needs manual fixes proportional to amount of GENUSD, GENCON, GENBIN,
MMCX used and on how sophistically and tricky is original code written.

In our experience, there is enough room for partial automated conversion which can significantly reduce engineering
hours and prevent typos, mistakes due to inattention or logic errors. Manual completion after automated AC400
conversion may take 2-6 weeks, depending on experience. That manual post-conversion job is much easier than at
least half-a-year-long manual reprogramming of AC400 to AC800M.

You can send us AAX, BAX files for assessment how many working hours will be needed in your project for manual
fixes in converted code.

Features

e Input files required for automatic conversion: *. AAX , DBT (Advant controller database export file), * TCS in
case AAX files contain Type circuits. Note: BAX file is not required hence it secures AAX files cannot be
opened in Function Chart Builder by other person.

e Qutput TXT file contains translated all global variables, constants and Single Control Modules (PC programs)
ready to import into 800xA / CCB. Typically one output TXT file contains one translated PC program.

e Advant AMPL code is being converted into Programs or Single control modules(SCM) using FBD or SFC
language in Step1 conversion. Selection between Programs or SCM is available in the Header of the VBS
Import script for importing to CBM.

e Single Control Modules (SCMs) are being converted to CBM Diagrams in Step2 conversion.

e 10 function blocks (represent DB blocks AlS, AIC, DIS, DIC, AOS, AOC, DOS, DOC) are distributed in
converted Programs close to the related logic.

There is built-in SQL logic, which decides for the most appropriate location of each single 10 function block in
Single control modules (PC programs), according following rules in descending priority:

o The fastest program cycle is selected with the connection to the particular DB / 10 element
o 10 function block VALUE or CALC_VAL is written
o 10 function block VALUE or other terminals are red the most times in particular PC program

o These AlS and DIS, which are not connected in any PC program, their 10 function blocks are created
in dummy PC99 generated by conversion tool. That dummy PC99 should be converted as the last
one. The most likely AIS and DIS collected in dummy PC99 are used as independent measurements
just displayed in HMI graphics.

Local distribution of 10 function blocks in PROGRAMs is very helpful for easy tracing logic and for navigation
from HMI / Alarm list / HW 10 cards to the logic. Example of how 10 function blocks are created at the first
and the last tab of each PROGRAM:

2 Smglhe Control Hodule - Applcation_LARF_PCISARP_PCLS 1000
Edtor ft Yew jwet Took ndos el

‘i B SN & B0 A % 28 gti@ a3 ° I8
Hame Data Type Adtribastes intial Value 1

M BURNERZ_CHAMBER_TEMP fb Name _ sanngi20] constant idden 'BURNERZ CHAMBER TEME

25 BURNER? CHAMBER TEMP b Descr samngl 10] constant hdden TITS16CTE

Input DB blocks:

AlS, DIS, AOC,
DOC

are located in the

first code Tab

(STs P, virasis Edis Voo FraeBaas] Teid
L i

i
i
:E::g
f
i
:1 8
* SRt] ¢ :
i
i
fs
E— L

STo A ke i e e Output DB blocks:
e, - 3
:,.n..:‘j? '.’:-:?[AOS, DOS,
oaTmTl
=2 AIC, DIC
e prepncs R are located in the
s —— supmemmaes
o = i 15,13, MARTS_10_33 Lo end of

SCM / Program

]

Row 1, Cedl BOORALGmIn

ReallO and BoollO variables are created locally in the same SCM/Program/Diagram along with
corresponding 10 function block in case of Local preference, or globally in case of global
preference. |0 variables are furnished with original 10 name, Range, Unit and Fraction in variable
description.

Name and Description texts are created as local “constant hidden” strings in SCM/Program (by
default, as per example above) or as project constants organized in folders of constants like
cNames.<Application name>.<Const name>. The same is applied for Names and Descriptions of
Motcons, Valvecons, Pidcons, Manstns and SEQ function blocks...

Name and Description constants are uploaded automatically to the Control Builder during
importing of converted code.

Names and Descriptions will be connected directly to the input parameters in Diagrams

Extensions are being added in the end of 10 FB names in order to prevent collision between FB
name and ReallO/BoollO variable name.

Name extension of 10 FB is adjustable in the converter’s User settings. Default extension is “_fb”.
If extension setting is preset to “_#” then particular type of 10 function block is used as
extension, e.g. <DB name>_AIS , <DB name>_DOC,...

10 values are referenced in the logic in 2 ways:
o Locally by <IO FB name>.<terminal> within the same PROGRAM where |10 FB is located

o by global variables connected to the terminals of 10 FB, if IO value is used also in other
Program (s). See chapter “Preference for local/global variables” below.

Original Descriptions of 10 function blocks are also added in Page comment in which particular 10
FB is located and also in the remark above FB in process logic reading values from 10 FB

If Local variable preference is preselected before conversion then ReallO / BoollO variables (to be
connected to 10 cards) are created locally in the same Program in which particular IO FB is
created.

Code distribution can be adjusted by setting appropriate names of target Programs / SCM and code tabs. If
the same name is set for several code blocks (FUNCMs), their code is merged into one code tab. This
approach can decrease AC800M CPU load significantly, especially if there are a lot of small FUNCM/SLAVEM
code blocks in AC450.

 Control Builder M Professional

file Edt View Tools Window Help o
R ’3 ¥y @
& §PLCS PC21 (Sigle control mockde) Programs / SCM names can be modified before
22} PLl\:_S_F:“CHZ_l_ 300 (Single control module) - (A200) . .
®- J@{PLCS_PC21_500 | (Single control module) - (A500) conversion. Programs can be split/merged by
@ Jgh PLC5_PC21_1000 (Single control module) - (A1000) . Lo
= @ PLCS_PC22 (Singe control modue) setting new/another existing Program name

PLC5_PC22_200 (Single control module) - (A200) .

PLCS_PC22. 500 (Single control module) - (A500) instead of a default name preset by Analyze
PLCS_PC22_1000 (Single control module) - (A1000)
PLCS_PC22_SEQ26 (Single control module) - (A4000)
B @ PLC5_PC30 (Single control module) - (A1000)

function.

Analyze function presets Tab names by default as original PC addresses of FUNCMs like PC22 3 2 6.

Modify Tab names according
particular control function or plant BS0B60B70RMANCH i
. . I0.DOX._05 8176P21 K11 — ¢
part. Merge tabs if possible before BSOVOECT.OSE P |
conversion by using the same Tab BSOBEIRT0ESTOROE
name for several original FUNCM code . 2lulalz Iyl
[N pumpasnpm X B50V06_A[B50V16 /7

blocks.

Preference for local / global variables.

In case Local variables preference is set, global variables are created only if particular variable is used in more
then one Control module, mainly in case of communication between PROGRAM of different cyclicity :

This preference is applied for named connections in the logic and for connection between 10 function blocks
and the logic. Local 10 signals are referenced by <IO FB instance name>.<terminal>.

Local or global preference - what is the best option?
Global variables preference is handy because all variables are accessible across all converted PC programs.

On other hand, amount of global variables is limited within one Application (~*65536). Unfortunately Control
Builder complains if maximal limit is exceeded just on download to the real ACBOOM CPU. This problem may
be discovered too late if CPU is not available during programming phase of the project.

Therefore, the safest option is to prefer Local variables, especially when convering to Diagrams or if the
control logic is complex — say, in the case of more than 20 PC programs per one CPU.

Time entries (like D=1:0:0) can be converted as time constants (cTimes._1h) or coldretain time variables if
adjustment of time entries is expected.

All time constants used are listed in the end of output TXT file and they are automatically added as project
constants during importing converted code into 800xA. The same applies for String constants.

¢ Symbolic names translation. Original symbolic names at PC element outputs are used as names of
new variables connected at converted function blocks outputs.

o If original symbolic name is enclosed in parentheses, symbolic name may contain even special
characters. In that case conversion tool converts special characters as abbreviations, e.g. “<” is
replaced by “_It_", “%"” is replaced by “perc”...

o In case there is no symbolic name available for the particular PC element output, following rules
are applied:

o In case of objects (Motcon, Valvecon, Pidcon, Manstn, AlS, DIS,...) , output variable name
is created as <FB name>_<terminal name>

o if output variable is connected in other Single Control Modules, then global variable is
created like
<PC prg.>.<remaining part of original PC address>_<PC element output terminal>
eg. PC15.1 6 0

o if output variable is connected to the neighbour code tabs within one Single Control
Module, then named variable is created like
< original PC address>_<PC element output terminal>
e.g.PC1516 0

o if output variable is connected inside particular Code Tab only, then variable name begins
with 2 underline characters — these variables are not listed in variable list of Control
Module

o Incase symbolic names are lost in uploaded .AAX files from Advant controller, it is possible to
restore the original symbolic names during converting. In that case, ask customer for older
AAX/AA files that still contain symbolic names. Upload these old AAX files to the conversion tool
with names starting with ,SYMB“, e.g. SYMB1201.AAX . The old symbolic names will be
extracted from the SYMBxxxx.AAX files and used in the converted logic. This automatic recovery
of symbolic names has already been successfully used in the real projects.

Example of alternate variable naming if original symbolic names are not available:

k! INZ- (WIVEL T@-01}
ECa. 135 o1 b
10273 7LTL 250E £k Value ————— i
-1 >| BCS._10_4 8 T4 gu_I2
| 0.95— | —— | - Tt =
15¢<BC4 10_8_22 - > | BCS._10_4 5 T1 ge_I2
L 10 B 22 ¢ e I I 085 Tl gu
INL- (NIVEL TG0}
- | BCS. 10 & € T1 ge 12538
s6.0— |
- - | BCs._10_4 8 T4 gu_I12
0.4— | S |
IN1-(DILUCION REQUERIDA}
10.20C.HIC_250_fb Value - BCs_10_% 8 Ovvld
-5—
INz-(DILUCICN REQUERIDA]
100.0— | - 0.00170%4—| =
L 1.0 | L
——
ECE._13 8 00
7 SwgraTd S4_ENTL_WENIGER 25054 X
bl

| nzs307_ev_aur_msamm se | e
| el i

JI}IS_MZM:;MI_M —— M25334_LAUFT 265033 Si
—— bood —

e Selection of STEP transition variable:
o single bool variable

o whole logic expression.

What can be helpful for more informative HMI in SFC Viewer (available only if whole STEP logic is
converted into SFC only).

= Single Control Module - BODELtestl_PC7.testl_PC7_500

3,41 @ & [fiwow [T e R = 1 A e

™
1 (PC7 GH_SEQ_CPH_STR AND (PTSH_GHYZ_SED SI_TON_time_1 >= clime _53))
= AND PC7 SH_F_SHY2_CIPURMN AND PC7 SH_FS_SHYZ_FV_OK

—: PTSH_SHYZ SEQ_Tn

| PTSH_SHYZ_SEQ_SI_START_PUMP_R * |

CTrwTmeTm —— s
l | LS vrmisi

e SEQ conversion:

o Whole STEP logic is converted into SFC as by default. This is the best option if Steps contain just
one page of simple logic like few timers and MOVE sending commands to the valves, motors and
PIDs.

o In case STEP logic is complex, for better readability it is useful to convert STEP logic into FBD code
located one tab before SFC. In this case SFC is used as a ,,SEQ skeleton” for enabling particular
FBD Step logic.

Step code examples, if FBD is selected in User settings for SEQ translation:

Taeps S5 ALACIA NI Balsare
r--.wxﬂ.-—- L Step output variables are written only if step Is running
s 81
. - t
H L I I _Bani b vRuneyt
LG SACTA_ B Palnas l l—_.]—_t'; }
} 5PNt Lt
Bmpin
i e s=nl o -
ATl e {3 | -
- i =
—
128 10 neat | ’ w
ey 1200, 3]
} 8T AN B e
A
e
e
~z
e T PEM S
-ty — P
- ——m | oam e
4T WENI0N 5008 Ny et = S oo ol oy R T
s
U 4 T
% 1
T et s el)
PN 204 08 e s
e ot RET i 1 w—an B2 7300me B eve
= ot o m o T o e
B e e - o 1 s —
a1 i wzzing
b
e | m—
w—— e
e m e e
34 7L WENSSEN. 2200 -1 e

o SFC contains Steps (without process logic), Step Timers, Transitions, Jumps and live values to SEQ
Faceplate

o JPOS jumping from any to any Step is supported
o SFC contains logic for showing live Conditions with texts , Info Val, etc...

SFC skeleton example:

E Single Control Module - Application_LARP_PCIS.ARP_PC1S_1000 .lwﬂ

,_]—.n BC15 AVS16C14BrniStep2fun = SEQ_516C14_S2_Gas_supply X
| - w {® for HMI =)
| PC15.SEQ S16C14_fb HSI . PrePos = 1
—SEQ_SIEH_Ti PC15 SEQ_516C14_fh_HSI. PosH := 2
PC15 SEQ S516C14_tb _HSI NxtPos := 3.

| FC15 SEQ _516C14_{b_HSI CondSta2 = PC15.MAINGAS_BELEEDVLV_OFN:
[.] PC12 S o1ech {mshHol Jomeat ™Y P16 XUS16C14BrmiTurnOf s
1 16C147 0 tal = PCL 16C14Bral Tur
——SERLIMCH_Ti2 — SEQLVMCH_SL Jumpl PC15.SEQ_S516C14_fb_HSI JPosl = 12
L SEG_SIECH_S12_SHDW_OFF

SEO_BECH_S2 Ous_vupply

|

',, = - BC15 SEQ S16C14°¢b HSI InfVal = PC15 AVS16C14B1Step2T,
L’““‘Z‘ PC15 . SEQ_S16C14_fb_HSI andgtal = PC1S nuuc.\s_ai_gngﬁeém.

— SEQ_SIECH_Tid — GEQ_BIRCH_52_Jump!
e BEQ_SISCH_SI1Z_SKDN_OFF

¢ Number of 800xA Tags can be optimized by means of User filters of 10 signals which do not need
faceplates. The aim of tag filters is to avoid using 10 FBs for motor’s MCC signals and limit switches of valves,
which values are being displayed in faceplates of corresponding valves and motors already.

e Description of connected 10 signals is added into the remark above function blocks.

SLECI4_Burmar 1 - process imtwslech
L oy | - g
—I" Comp B
I0.AZS.EURITR._ATR FLOW_f5 Value —1 31T
1l0—1Mps FacEer:
i.0—H[] I6r mii)
any 1)

B.XTILECI4_no_flow

0. AT3.BURMERL_GAS_FLON_fb Valuw

8.0 4 _TiowSont 0l

-
T

Time, 30w
a5 xTeiec14

Another example of DIC Description CV quick cross-references
or cvDIC_HHCO3DVOOTF3_ MV
IN1 ' -+ bool
IN2 '

| | RW:PPC12_PC1_1000, R:PPC12_PC3_250

e In case of rarely used PC elements, which are not mapped in the conversion tool yet, they are being replaced
by red placeholders. At the same time all input / output logic connections are translated and maintained.
Names of placeholders are added to the FunctionBlocks definition tab. Just a new FB definition in User Lib
left to be added manually.

Hotssl signals from RMCI-Middle.page €300 PO

*

lm ITRCIP TEMIIONNND
THGTNE STRIF SREITosd
TIE REAINERD 3

!t_ D4
u‘-....- h- Do
3

o if this unmapped PC element contains connection to DB element, DB name is used to name an
instance of the placeholder, in this case Name and Description parameters are filled automatically

o All Placeholders are listed in the end of the output TXT file.

o Data type structure prepared by automated conversion is shown in the following screenshot. Data types
are created in Control Builder during importing of TXT files, which contain Control modules and data types.
During sequential importing of several TXT files (since 1 TXT file contains 1 PC program usually) variables are
added into the existing data types imported before. No variables previously created are deleted during
importing into Control Builder.

o Description of every variable contains information where particular variable is written from —source
PROGRAM name and Tab name.
Unit is also placed in variable description.
Initial value is set for time and string constants and for numerical constants used multiply in the logic

o All original int variables are converted as dint
= Y im0 =
- W Lbrares =101 x|
@ apocaton_t -PLC_Lhorma | ot b B 3 | e) o & wnl s
- W Corrected Lbrares -
4 Data Types Adtributes ﬂ
& AIC_Type [retain
£ A15_Type retan
g Sy retan
risy retain
4 DAT Type i
£, iC_Type | | |
A 0i5_Tye [ST5]_Globol Variables { varasies]|4] | S b7
A 0OC_Type
& Dos_Type 4]+]\ Desc {Chece ,_FinginEodor J4| |»| ‘g
4 o.rve X!
& it Edtr Edt Vew Toart Took Widow eb
& 2 Type HBY 0~ a0 s
r gk Hame Dt Tyge s astidos =]
& Fs e 1TRS WS Ty retan
A pCs_Type 2 AC (AIC_Type retain
& PC7_Tyoe 3 A0S A0S Type rotain
& PCIS Type 4 DS DIS_Type Iretain
g:::?'_'m 5§ DOS \DOS,_Type retain
& N _r‘::: 6 DOC DOC_Type [retain
& Conrol Modies T [Dic IDIC_Type retain
& PPy (snge | 8 1AOC AOC_Type retain
& wo.pc2 (soge | 9 PIDCON [PIDCON _Type retain
| ARPe3 Gnde (190 isEQ |SEQ Type retain |
1 =]
Reading lorary CI853SeralComntd 1.0:1 A C s [KXS] Mo
s 3 h__ﬂ_ g
Reading lbrary SS00CTE01CIES LD -
Reading ibvary SSOCIBaCTESaMb 1.3 LALE/\Deser L, LIS 1L 7
Reading lbrary S80IoModuebusHoLd 1.3-2

e Tag counter is built in. Tag quantity is shown in the name of each output TXT file.
e Type Circuits. Conversion tool can translate Type Circuits in case:
o all TCS source files are available and uploaded at your Input files before conversion

o AAXfiles contain patterns like ,,(* Begin of Type Circuit” -and- ,,(* End of Type Circuit”

(* Begin of Type Circuit PC89.1.1.1 INTFSV2 *3
(* End of Type Circuit PC89.1.1.1 INTFSV2 *)
- OR

o TCS file header contains a regural expression list that defines significant parts of TCS that must
match to AAX code. In this case Type circuits are being identified in AAX code automatically even
without gates ,,(* Begin of Type Circuit” , ,(* End of Type Circuit” in AAX.

(;.n..a..-..-.--..-.--..-.--..ao--;...--;.o.a.a-..n-n..n...n.n..n.;..--..nann..-anlngaan

(* ME.TCS generated with FCB Release 6.9/@ 30-MAR-20821 13:06:39 *)

(* pagelayout: DIN 6771 A4 landscape English Rows: 9@, Cols: 185 *)

(* Node type: AC 450 with SW QC@7-BAS41* 4.0 Base SW: QC@7-BAs4l 4.8 =)

(* Additional options: QC87-COM41 4.8, QCO7-FUZA1 4.8, QCO7-LIBALl 4.9, "y

(* Qcev-L@42 40 Yy

("~ n{PC\NA+][715 1+] \S+BLOCK Y S@\nS . 100 S+MOTCONYS ™\ (BAnS Y. 2,5 +MOVE \s "\ (B, 5@ \55 Y. 100:502#] *)
(** ai-i':"h'-"a‘i'-":"-h"a'i'i":"i'z"t'i':"l:'i"x"i“i":"r'-':"il‘:’r'-":"i'l:’l‘i‘:'r'l':’l‘i‘:'n"i':’-H‘:'l"i'i-":"t'i’ffn'ﬂ':'l‘a')' e

o Type circuits are translated as Function blocks instances in FBD code. Note that Function block types
should be prepared manually in the current version of the Conversion tool.

o “extra” PC elements inserted within boundaries of TC in AAX are converted after FB

¢ 10 variables connection to 10 cards. CSV file (comma separated text) is created during importing of
translated logic to Control Builder M. CSV file contains list of BoollO, ReallO variables used in the converted
logic including DB element original names, Full path of 10 variables, Analog ranges, units, fractions and
channel inversion. CSV file data can be easily copy-pasted to the 10 card editor. We cannot generate
complete HW structure of 10 cards since we don’t know your new IO cards layout and |10 signals distribution
in 10 cards.

Libraries

PP Library (Pulp & Paper) is used in converted code as the first option (default). If PP Library is available and/or
requested by customer it is advantageous for AC450 conversion because:

e PP function blocks are compatible with Advant controller’s function blocks. Also Ampl2m conversion tool is
very well optimized for using PP Lib functions.

e PP HMI Faceplates have similar functionality as control objects at AS500 operator stations and nearly the
same look and feel like 800xA+AC400connect HMI.

UserLib

Reliable and cost-saving solution by means of using Standard AC800M libraries + UserLib. In this case FBs are used
from BasicLib, ControlSimpleLib mostly. In addition, there are function blocks created in UserLib replacing AC450/APC

FBs which are more complex hence not easily convertible by standard library FBs. UserLib FBs were tested thoroughly
and used in the real projects already. UserLib is password free hence open for modifications.

See how Libraries are utilized in the list of supported function blocks in the end of this document.

Any library can be utilized in the conversion code by means of Diagram Templates prepared in CBM. During the
conversion Step3, the entire contents of the Diagram Templates are unpacked into a Diagram, including all variables,
functions, FBs, CMs used in the Diagram Templates.

Step2 - Conversion to Control Diagrams

Example of converted logic from Output TXT files (FBD code) to Control Diagrams. Conversion tool calculates the
position of each single function block in a logical chart in a similar way as FCB does.

Communication variables are used instead of global variables.

B TR102_5052001
TIHS2002 AT plusbmn ——— | 0 (ool
EGAUG ZONES ————————————————i2
TIPCIS22 16 ORO i3
BENER FLEC OK =iy

Ll TRI03_SQ52001
= bool -+
Nl —

1 =Nz

and. 58
and

DIVERS_SQ52001 wiiéi
- biool k- :
BMCS2101_RFS SEQ N1 —— i 5052001 SEQ_PRET ;
&MCE2201_RFS_SEQ = IN2 and:59 SO52001 PRETE I —aak 20:and N2
Ser SRS, ekt ETE ——
SIMCSZA1_RFS SEQ re—————————iN3 I P b 1 mIN2 !]
&XM52001_RFS_SEQ =—————INd e move61 23PCI554 1 R TrigCl...
<IN3 IBCHR. cDAT_SQ52001_B Val
—= IN1 -— = bool

2601 s

and.63
and’

= IN1 | -SEQ_SQ52001_SEQ_RFS
or:62 =
ar
N

- IN2

13:5052001_RUN

Testing of converted code

It is helpful, but not mandatory, to test the converted code in simulation mode before commissioning. According to
experience, the testing of the converted logic helps to get familiar with the logic thus it makes commissioning easier.
All motor MCC feedbacks and limit switches of valves should be simulated in ACBOOM while 10 cards are
disconnected. The aim of tests is to perform simulated start and stop of controlled plant. It is recommended to run all
sequences and check if all particular motors, valves and PID controls perform as expected.

Conversion tool released version

Ampl2m conversion tool has been tested by several experts in ABB control systems. It has been used in many
migration projects successfully. The tool has been used by the author in X projects including commissioning.

Ampl2m conversion tool development is in progress with the aim of increasing its efficiency. Meantime the
conversion tool is ready to help in migration projects as solid stabile version. Any bug reported will be fixed ASAP.

Punch lists or any idea for tool improvement are appreciated much. It is possible to adapt the conversion tool for
your project specific needs or for other libraries, see “List of supported PC elements” chapter.

Guarantee of Service quality, Warranty

Herman-Automation warrants that, for any paid Conversion , for PC elements supported only, the Conversion will
produce control logic equivalent to the original control logic from Input files (Equivalent logic means that converted
logic is producing the same outputs as original logic if both control logics are working with the same inputs).

The warranty does not apply to the free Conversion.

Automated conversion Workflow

3 2 1

Comversion queve comvert max. 1 PC orogram ot a tme |
9a
]
Ly PCS 8 8 #
PC3Y CONTRM (20001107
- PCSAY FUNCM Castroy
- PCRLD FUNC Cortrol
= =K FUNCM " [
=i P14 FUNCM Cortro
nd PCLS FUNCM »
- P32 SEQ(1000.1.1.1.1)
= C PO33 $EQ (2000.34.0.1.1)
= PCSa SEQ000IR LYY
= L=t] SEQ (2000.381,1,8) " S, 2000
PCS10 CONTRM (200C.37.0)
T PPI_PCSS 0305 1658 60
g - PCLI0S FUNCM . #P1_PCS 2000 Control
PPY_PCIS 0300 163819 TT 79 PORIOH0 FUNCM " s PPY_PCS 2000 Control
tags
PRIPEIEISHLE T IR
tags
PPI_PCIS_0309 141962 TT as Dusnmy blocks magging
ug
P TR - 17/20
tags
PPI_PCY7 0109 165310 TXT 4382
Ceags

1. Create your account at Converter web site

2. Check and adjust your preferred settings e.g. select Libraries to be used, Page layout, local/globar
preference, code optimization settings...

3. Create new Project

4. Create new PLC. PLC name must be unique within one Project. You can use PLC name from your Advant
engineering PC FCB.

5. Upload PC source files *.AAX and DB export file *.DBT from FCB (use File -> Export DB section... and
confirm default settings). Only one DBT files should be uploaded containing the export of the whole DB
part. All AAX files should be uploaded prior to the first conversion of particular PLC.

How to export DB Section into DBT file in FCB:

Export DB Section g|
DB E=port Opbons
[T Treate ore Fis par Calinamel ﬁ

i . = — =
| Include Headline with DB Teminal Names |
T e e o P VT

I A R

[Inchude System Defaults

I Inchude System DB Elements
I~ Filler/Caliname | =]
I~ Filter/fiame | ~|
DB Ewpont Eile Mame;
F‘JHEJEBEBT - [™ Copy to Cipboard

ok | ey | cencel | Hep |

6. Upload FBDGtype.XML file exported from Control Builder if you plan to convert logic to Diagrams.

7. Select AAX file(s) for analysis and click Analyse button. All AAX files can be selected and analyzed at
once. Converter parses selected AAX files and calculates number of convertable function blocks.

8. Check and adjust suggested Control Module names and Tab names in Conversion queue table. It is
highly recommended to change Tab names to appropriate names like plant part abbreviation. Merge

several code blocks by means of entering the same Tab name. Rule of thumb: Less Tabs = lower ACS00M
CPU load and faster opening/saving of CM editor.
9. Convert: Select code blocks in Conversion queue table and Click Convert button. It is recommended to

convert one PC program at a time (one output TXT file per one PC program). Do not convert only part of

PC program because some variables may remain unconnected. Alternatively click on PC program header
line in Conversion queue to fold/unfold PC prg.
Convert automatically generated file LAST9901.AAX as the last one. That file contains all IO function

blocks, which are not connected in PC programs. (typically AIS, DIS used in HMI only)
You can repeat conversion of a current PC program but never convert to previously converted programs

otherwise distribution of DB elements in PC programs may change and duplicates of some DB elements
may occure.

10. Select limited conversion for free or full conversion if you would like to (demanded). This selection has
no meaning meantime since conversion tool is free.

11. After selection of the full or demo conversion, popup "Conversion status" appears and displays the
progress of conversion.

12. Conversion takes from several seconds to several minutes depending of AAX Advant code complexity

If you convert to Diagrams, bypass steps 13-16 and continue with step 17.

13. Select first and then Download converted text file, which contains all converted Control Modules and
data types in text XML format ready to import to your 800xA system.

14. Adjust selections in the header of the Import VBS script.

15. Import converted text file to the 800xA system by means of VB script (available in Download section)

16. Define global variables in the Application using imported data types like 10,DAT, AlS, DIS, AIC, AOC,...

Step2 conversion
17. In Output files section, Select one converted TXT file with a name in the form
PlcName_PCxx_DDMM_hhmm_xxtags and click the ,,Convert” button located in bottom section ,,Step2:
Conversion to Diagrams”. Repeat conversion of each PC program one by one.
18. Select first and then Download converted text file ,Diagram_...“, which contains all converted Diagrams
for selected PC program

Step3 conversion
19. In Output files section, Select one converted TXT file with a name in the form ,,Diagram_PIlcName_PCxx"
and click the ,,Convert” button located in bottom section ,,Step2: Conversion to Diagrams”. Repeat
conversion of each PC program one by one.
20. Select first and then Download converted text file ,DiagramUnp_...“, which contains all converted
Diagrams for selected PC program with unfolded Diagram Templates

Post-conversion Phase 1

is defined as manual programming after automated Conversion, in order to fix all unconverted parts of Output
files and to get converted programs ready to download to ACB0OM controller, including following activities:

o Visual checking of imported code page by page according original logic

o fixing all Placeholders in converted Output (Placeholder replacement by appropriate Function blok of
AC800M)

o fixing all red connections between Function blocks. Converted code may contain red connections, be-
cause special DB hidden terminals or terminals SELECTED were used in original logic.

o fixing all Code loop errors during compilation in Control Builder M (only if SCM:s are used)

e assigning Tasks to Converted code in Control Builder M

e defining communication between other controllers as replacement of DS and DSP communication blocks

e Downloading project to the Softcontroller

Post-conversion Phase 2

is defined as configuration in Control Builder/Engineering workplace in Customer’s 800xA system in order to:

e to setup Coldretain values into Pulp&Paper function blocks in Control Builder M online
e to build hardware definition of ACB00M and all its hardware components

e to setup IO variables to IO cards, in Control Builder M

e to configure texts of Sequence steps in 800xA Engineering workplace

e to configure interlock texts of Valves and Motors in 800xA Engineering workplace

e to download converted code into ACBOOM CPU and to optimize CPU load and Tasks

o to perform FAT test with Customer / end-User

e Commissioning of converted code

Herman-Automation can take over responsibility for post-conversion activities and can provide Post-conversion
Service including whole or part of Post-conversion activities defined above, according Purchase Order from
Customer.

List of supported PC elements

Ampl2m conversion tool supports now almost 100 PC elements, which are the most frequently used in the control
logic of Advant controllers. Following table explains how particular Libraries are utilized in the converted applications.
Conversion tool is improving and number of supported PC elements is increasing after each project.

The built-in mapping of any PC element can be overritten/extended by using Diagram templates with the same call
names as PC element.

PC element Selection Selection
User Lib PP Library

AND Basic Lib

OR Basic Lib

TON Basic Lib

TON-RET Basic Lib

MONO Basic Lib PP Lib

MOVE User_Lib PP Lib

MOVE-A User_Lib

OR-A Basic Lib

INV Basic Lib

STEP Basic Lib

CONV Basic Lib

SR Basic Lib

FUNCM N/A N/A

TRIGG Basic Lib

SR-AO Basic Lib

SW-C Basic Lib / User_Lib (T)

TOFF Basic Lib

MUL Basic Lib

SUB Basic Lib

SR-00 Basic Lib

COMP-R User_Lib

AND-O Basic Lib

DIV Basic Lib

BLOCK Basic Lib

ADD Basic Lib

REG-RET User_Lib

COUNT Basic Lib PP Lib

CONV-BI Basic Lib PP Lib

LIM-N Basic Lib PP Lib

COMP-| Basic Lib PP Lib

REG User_Lib PP Lib / User_Lib

MUXA-I User_Lib PP Lib

THRESH-L Basic Lib PP Lib

COmMP Basic Lib

OSC-B Basic Lib

SR-AA Basic Lib

CONV-IB Basic Lib PP Lib

MUX-N Basic Lib PP Lib

MUX-MN Basic Lib, User_Lib PP Lib / User_Lib

COUNT-L Basic Lib PP Lib

SR-D User_Lib PP Lib

MUX-I
MUX-MI
DATE
TIME

SW

ABS
REPORT
FILT-1P
CON-PU1
PB-R
SR-OA
MAIJ-R
MUXGR-MI
PB-S

XOR
SQRT
ADD-MR
ADD-MR1
SHIFT/SHIFT-L
FIFO
DEMUX-MI
DER
FILT-2P
REG-G
FUNG-1V
FUNG-2V
FUNG-T
MAX

MIN

P-1
P-DEADB
Pl

PDP
RAMP
RAMP-S1
TIMER
MANSTN
MOTCON
VALVECON
PIDCON
PIDCONA
GENCON
SEQ

STEP
DIV-MR
TEXT
RATIOSTN
EXP

LN

BGET
BSET

lIL

ILI

Basic Lib PP Lib
Basic Lib
Basic Lib
Basic Lib
Basic Lib
User_Lib
User_Lib PP Lib
User_Lib
Basic Lib
User_Lib
User_Lib
User_Lib
Basic Lib
Basic Lib
Basic Lib
Basic Lib
Basic Lib
User_Lib
User_Lib
User_Lib
User_Lib
User_Lib User_Lib
User_Lib
Basic Lib
Basic Lib
User_Lib User_Lib
User_Lib User_Lib
User_Lib User_Lib
User_Lib User_Lib
User_Lib PP Lib
Dummy FB PP Lib
Dummy FB PP Lib
Dummy FB PP Lib
User_Lib PP Lib
User_Lib PP Lib
PP Lib
User_Lib, FBD+SFC PP Lib, FBD+SFC
User_Lib, FBD+SFC PP Lib, FBD+SFC
Basic Lib
User_Lib
Dummy FB
Basic Lib
Basic Lib
Basic Lib
User_Lib
User_Lib

User_Lib

DRTRA (APC) User_Lib

ANALYSE User_Lib
C2SEL2 PCITLib
CFG2 PCITLib
C2PB1 PCITLib
C2PV1 PCITLib
C3PMV1 PCITLib
C2pPvV PCITLib
C2PB PCITLib
VIS2PV User_Lib
VIS3MV User_Lib
VIS2PB User_Lib
VISMSTN User_Lib
VIS2SEL User_Lib
VISCFG User_Lib
Legend:

* PP Lib solves only a part of all PC elements

Basic Lib
* Remaining part is solved partially by Basic AC800M libraries *or* by UserLib

User Lib
* User_Lib contains FBs used as replacement to PC elements without close match in other Libs already
developed, tested and used in many projects

Developed by: Kamil Herman, Slovakia
contact: kamil.herman@herman-automation.com
ABB AC450 and 800xA Specialist Providing a range of Control System design, programming, migrating and

commissioning services. We are ready to deliver the complete migrated control software in status ,Ready for
FAT” or ,Ready for Commissioning”.

