

ABB AC450 translation to AC800M code

by easy web-tool that saves you time

Ampl2m conversion tool was developed during real migration projects in order to simplify migration of ABB Advant

Master AC400 family controllers. AC450, AC410, MP200, AC110, AC160, AC70, AC80, APC are supported.

Manual translation of AC450 programs to AC800M can be very challenging and exhausting. Manual translation of one

Controller may take 6 months or even longer. Typical challenges of AC450 translation are:

 AC450 Control application is usually quite complex containing thousands of pages of logic

 Control programs may be written in complex way that contains undocumented so-called “hidden terminals”

of database elements, which makes it difficult to understand the logic and is therefore difficult to translate

 Programs using MMC-IND or GENxxx PC elements

 Programs using special libraries like RMC, RPC, APC, QCS/1190

 Programs utilizing Type Circuits or User defined PC elements

 Programs written deliberately in a tricky way, e.g. if the logic depends on theexecution order and timing of

reading and writing DB elements

 Logic containing DB terminals not available in AC800M, like :SELECTED

 Sequence part translation to SFC requires extensive experience to prevent bad surprises during

commissioning

Ampl2m tool cannot accomplish 100% complete AC450 conversion, but it can significantly reduce engineering efforts

and prevents human errors. Conversion tool is able to save up to 95% of working hours, based on experience.

Remaining unconverted signals and functions, displayed by red color in AC800M code, should be completed

manually.

It is really worth to use the conversion tool in order to reduce all that exhaustive manual migration job, based on

experience of the author in several projects already commissioned.

Core Benefits

 Automated conversion can save hundreds of working hours per each Advant CPU

 Conversion tool is easy-to-use and available on-line 24 hours every day

 Prevents human errors

 Conversion process is interactive thus under your control

 Pulp & Paper Library –or– Standard AC800M libraries –or– User libraries may be selected for conversion

 Converter utilizes hundreds of particular SW solutions integrated into one common platform, verified in

successful projects and developed based on a long-term experience in AC450 & AC800M programming

 Converted code is efficient in terms of CPU load, easy to understand and free from any complex nested

structures

 Cost-saving in terms of tag count

 AC800M code optimization functions are improving code readability

 Original logic can be converted to CBM Programs, Single Control Modules or Control Diagrams

How does it work?

Conversion tool is built as database application hosted at Virtual private server (VPS) . It is available as web service at

ampl2m.com and accessible through simple web interface ready for instant conversion. Just log in, upload source

files and press Analyze and Convert button. Converted programs are available for download in few minutes.

Max. 1 PC program shall be converted at a time.

Output text files, which are available for download in “Output files” section, contain all logic, variables, data types

and constants ready for import into 800xA CBM or Compact Control Builder. Import is performed by means of short

VB script using ABB Open interface of Control Builder.

Security, Privacy

We are committed to protect your data. We take the protection of your personal data very seriously. We are using

SSL encrypted connection (https:), so third parties do not have access during transmission of data between your

browser and our Virtual Private Server (VPS). You can recognize an encrypted connection in your browser’s address

line when it changes from http:// to https:// and the lock icon is displayed in your browser’s address bar.

Our VPS is located in the Data center of VPS Provider in Germany secured by DDoS protection and Firewall. Your

Input and Outputs files are stored inside the database in our VPS. External connection from internet to our database

is disabled, therefore the database can be accessed by Conversion service only . Remote access to VPS is secured by

SSL Private Key thus restricted to Herman-Automation only.

Herman-Automation does not share with third-party nor sell to third-party Your personal data or Your files. Read our

Terms&Conditions for further information.

What is the efficiency of Ampl2m conversion tool ?

How much manual work is needed after automated conversion ?

Automatic conversion can save up to up to 95% of manual AC450 translation efforts, depends on how original code is

written. If original control application is built using standard functions then automated conversion covers almost all

engineering efforts regarding Logic conversion.

According opinion of many ABB specialists complete AC450 to AC800M automated conversion is not possible due to

significant difference with application handling between AC400 and AC800M. Manual post-conversion job and

experience are important parts of the conversion process.

Amount of necessary manual programming after automated conversion depends on the way how original code is

written:

 Automated conversion produces nearly working AC800M code if original logic uses standard features of

AC450 function blocks and DB elements – in case standard MOTCON, VALVECON, PIDCON, MANSTN, SEQ are

used

 On other hand converted code needs manual fixes proportional to amount of GENUSD, GENCON, GENBIN,

MMCX used and on how sophistically and tricky is original code written.

In our experience, there is enough room for partial automated conversion which can significantly reduce engineering

hours and prevent typos, mistakes due to inattention or logic errors. Manual completion after automated AC400

conversion may take 2-6 weeks, depends on experience. That manual post-conversion job is much easier than at

least half-a-year-long manual reprogramming of AC400 to AC800M.

You can send us AAX, BAX files for assessment how many working hours will be needed in your project for manual

fixes in converted code.

Features

 Input files required for automatic conversion: *.AAX , DBT (Advant controller database export file), *.TCS in

case AAX files contain Type circuits. Note: BAX file is not required hence it secures AAX files cannot be

opened in Function Chart Builder by other person.

 Output TXT file contains translated all global variables, constants and Single Control Modules (PC programs)

ready to import into 800xA / CCB. Typically one output TXT file contains one translated PC program.

 Advant AMPL code is converted into Programs or Single control modules(SCM) using FBD or SFC language.

Selection between Programs or SCM is available in the Header of the VBS Import script for importing to CBM.

Another tool is available for conversion FBD+SFC logic into Control Diagrams.

 IO function blocks (represent DB blocks AIS, AIC, DIS, DIC, AOS, AOC, DOS, DOC) are created locally in each

Program if their VALUE is connected in the particular logic.

There is built-in SQL logic, which decides for the most appropriate location of each particular IO function

block in Single control modules (PC programs), according following rules in descending priority:

o The fastest program cycle is selected with the connection to the particular DB / IO element

o IO function block VALUE or CALC_VAL is written

o IO function block VALUE or other terminals are red the most times in particular PC program

o These AIS and DIS, which are not connected in any PC program, their IO function blocks are created

in dummy PC99 generated by conversion tool. That dummy PC99 shall be converted as the last one.

The most likely AIS and DIS collected in dummy PC99 are used as independent measurements just

displayed in HMI graphics.

Local distribution of IO function blocks in PROGRAMs is very helpful for easy navigation from HMI / Alarm list

/ HW IO cards to the logic. Example of how IO function blocks are created at the first and the last tab of each

PROGRAM:

o RealIO and BoolIO variables are created locally in the same PROGRAM along with corresponding

IO function block in case of Local preference, or globally in case of global preference. IO variables

are furnished with original IO name, Range, Unit and Fraction in variable description.

o Name and Description texts are created as local “constant hidden” strings in PROGRAM (by

default, as per example above) or as project constants organized in folders of constants like

cNames.<Application name>.<Const name>. The same is applied for Names and Descriptions of

Motcons, Valvecons, Pidcons, Manstns and SEQ function blocks...

Name and Description constants are uploaded automatically to the Control Builder during

importing of converted code.

o Extensions are being added in the end of IO FB names in order to prevent collision between FB

name and RealIO/BoolIO variable name.

Name extension of IO FB is adjustable in the converter’s user settings. Default extension is “_fb”.

If extension setting is preset to “_#” then particular type of IO function block is used as

extension, e.g. <DB name>_AIS , <DB name>_DOC ,…

o IO values are referenced in the logic in 2 ways:

o Locally by <IO FB name>.<terminal> within the same PROGRAM where IO FB is located

o by global variables connected to the terminals of IO FB, if IO value is used also in other

Program (s). See chapter “Preference for local/global variables” below.

o Original Descriptions of IO function blocks are also added in Page comment in which particular IO

FB is located and also in the remark above FB in process logic reading values from IO FB

o If Local variable preference is preselected before conversion then RealIO / BoolIO variables (to be

connected to IO cards) are created locally in the same Program in which particular IO FB is

created.

 Code distribution can be adjusted by setting appropriate names of target Programs / SCM and code tabs. If

the same name is set for several code blocks (FUNCMs), their code is merged into one code tab. This

approach can decrease AC800M CPU load significantly, especially if there are a lot of small FUNCM/SLAVEM

code blocks in AC450.

o

Programs / SCM names can be modified before

conversion. Programs can be split/merged by

setting new/another existing Program name

instead of a default name preset by Analyze

function.

Analyze function presets Tab names by default as original PC addresses of FUNCMs like PC22_3_2_6.

Modify Tab names according

particular control function or plant

part. Merge tabs if possible before

conversion by using the same Tab

name for several original FUNCM code

blocks.

 Preference for local / global variables.

In case Local variables preference is set, global variables are created only if particular variable is used in more

then one Control module, mainly in case of communication between PROGRAM of different cyclicity :

This preference is applied for named connections in the logic and for connection between IO function blocks

and the logic. Local IO signals are referenced by <IO FB instance name>.<terminal> .

Local or global preference - what is the best option?

Global variables preference is handy because all variables are accessible across all converted PC programs.

On other hand, amount of global variables is limited within one Application (~65536). Unfortunately Control

Builder complains if maximal limit is exceeded just on download to the real AC800M CPU. This problem may

be discovered too late if CPU is not available during programming phase of the project.

Therefore the safest option is Local variable preference especially if control logic is complex – let say in

case of more than 20 PC programs per one CPU.

 Time entries (like D=1:0:0) can be converted as time constants (cTimes._1h) or coldretain time variables if

adjustment of time entries is expected.

All time constants used are listed in the end of output TXT file and they are automatically added as project

constants during importing converted code into 800xA. The same applies for String constants.

 Code optimization on/off. Code optimization improves readability of translated code.

AC450 logic programmers used to add some spare inputs at AND , OR elements in order to simplify future

online modifications. These spare pins are useless in AC800M logic therefore they shall be excluded during

conversion.

If code optimization is on, spare inputs of AND, OR elements are omitted, or whole spare AND, OR elements

and zero time Timers are bypassed. COMP+OR are replaced by GE, LE functions. Example:

 Symbolic names translation. Original symbolic names at PC element outputs are used as names of

new variables connected at converted function blocks outputs.

o If original symbolic name is enclosed in parentheses, symbolic name may contain even special

characters. In that case conversion tool converts special characters as abbreviations, e.g. “<” is

replaced by “_lt_” , “%” is replaced by “perc”...

o In case there is no symbolic name available for the particular PC element output, following rules

are applied:

o In case of objects (Motcon, Valvecon, Pidcon, Manstn, AIS, DIS,...) , output variable name

is created as <FB name>_<terminal name>

o if output variable is connected in other Single Control Modules, then global variable is

created like

 <PC prg.>.<remaining part of original PC address>_<PC element output terminal>

e.g. PC15._1_6_O

o if output variable is connected to the neighbour code tabs within one Single Control

Module, then named variable is created like

 < original PC address>_<PC element output terminal>

e.g. PC15_1_6_O

o if output variable is connected inside particular Code Tab only, then variable name begins

with 2 underline characters – these variables are not listed in variable list of Control

Module

o In case symbolic names are lost in uploaded .AA files from Advant controller , it is possible to

recover original symbolic names by script. In that case ask customer for older AAX files, which

contain symbolic names still. Send us these AAX files and we will extract symbolic names and

transfer them into your latest AAX files. This automatic symbolic names recovery has been used

successfully in the real project already.

Example of Variable naming if original symbolic names are not available:

 Selection of STEP transition variable:

o single bool variable

o whole logic expression.

What can be helpful for more informative HMI in SFC Viewer (available only if whole STEP logic is

converted into SFC only).

 SEQ conversion:

o Whole STEP logic is converted into SFC as by default. This is the best option if Steps contain just

one page of simple logic like few timers and MOVE sending commands to the valves, motors and

PIDs.

o In case STEP logic is complex, for better readability it is useful to convert STEP logic into FBD code

located one tab before SFC. In this case SFC is used as a „SEQ skeleton“ for enabling particular

FBD Step logic.

Step code example, if FBD is selected in User settings for SEQ translation:

 SFC skeleton example:

 Number of 800xA Tags can be optimized by means of user filters of IO signals which do not need

faceplates. The aim of tag filters is to avoid using IO FBs for motor’s MCC signals and limit switches of valves,

which values are being displayed in faceplates of corresponding valves and motors already.

 Description of connected IO signals is added into the remark above function blocks.

 In case of rarely used PC elements, which are not defined in conversion tool yet, they are replaced by red

placeholders. At the same time all input / output logic connections are translated and maintained. Names

of placeholders are added to the FunctionBlocks definition tab. Just new FB definition in User Lib remains to

be done manually.

All unconverted function blocks are listed in the end of the output TXT file.

 Data type structure prepared by automated conversion is shown in the following screenshot. Data types

are created in Control Builder during importing of TXT files, which contain Control modules and data types.

During sequential importing of several TXT files (since 1 TXT file contains 1 PC program usually) variables are

added into the existing data types imported before. No variables previously created are deleted during

importing into Control Builder.

o Description of every variable contains information where particular variable is written from – source

PROGRAM name and Tab name.

o Unit is also placed in variable description.

o Initial value is set for time and string constants and for numerical constants used multiply in the logic

(MD=…)

o All original int variables are converted as dint

 Tag counter is built in. Tag quantity is shown in the name of each output TXT file.

 Type Circuits. Conversion tool can translate Type Circuits in case:

o all TCS source files are available and uploaded at your Input files before conversion

o AAX files contain patterns like „(* Begin of Type Circuit“ -and- „(* End of Type Circuit“

- OR –

o TCS file header contains a regural expression list that defines significant parts of TCS that must

match to AAX code. In this case Type circuits are being identified in AAX code automatically even

without gates „(* Begin of Type Circuit“ , „(* End of Type Circuit“ in AAX.

Type circuits are translated as Function blocks instances in FBD code. Note that Function block types

should be prepared manually in the current version of the Conversion tool.

 IO variables connection to IO cards. CSV file (comma separated text) is created during importing of

translated logic to Control Builder M. CSV file contains list of BoolIO, RealIO variables used in the converted

logic including DB element original names, Full path of IO variables, Analog ranges, units, fractions and

channel inversion. CSV file data can be easily copy-pasted to the IO card editor. We cannot generate

complete HW structure of IO cards since we don’t know your new IO cards layout and IO signals distribution

in IO cards.

Libraries

PP Library (Pulp & Paper) is used in converted code as the first option (default). If PP Library is available and/or

requested by customer it is advantageous for AC450 conversion because:

 PP function blocks are compatible with Advant controller’s function blocks. Also Ampl2m conversion tool is

very well optimized for using PP Lib functions.

 PP HMI Faceplates have similar functionality as control objects at AS500 operator stations and nearly the

same look and feel like 800xA+AC400connect HMI.

If PP Library is not available there is another reliable and cost-saving solution by means of using Standard AC800M

libraries + UserLib. In this case FBs are used from BasicLib, ControlSimpleLib mostly. In addition there are 18 function

blocks created in UserLib replacing AC450/APC FBs which are more complex hence not easily convertible by standard

library FBs. UserLib FBs were tested thoroughly and used in the real projects already. UserLib is available for

download after your first accomplished conversion. UserLib is password free hence open for modifications.

See how Libraries are utilized in the list of supported function blocks in the end of this document.

Conversion to Control Diagrams

Example of converted logic from Output TXT files (FBD code) to Control Diagrams. Conversion tool calculates the

position of each particular function block in a logical chart. Shape of interconnections between FB:s is produced by

CBM after importing converted code.

Communication variables are used instead of global variables.

Testing of converted code

It is helpful, but not mandatory, to test the converted code in simulation mode before commissioning. According to

experience, the testing of the converted logic helps to get familiar with the logic thus it makes commissioning easier.

All motor MCC feedbacks and limit switches of valves should be simulated in AC800M while IO cards are

disconnected. The aim of tests is to perform simulated start and stop of controlled plant. It is recommended to run all

sequences and check if all particular motors, valves and PID controls perform as expected.

Conversion tool released version

Ampl2m conversion tool has been tested by several experts in ABB control systems. It has been used in many

migration projects successfully. The tool has been used by the author in 5 projects including commissioning.

Ampl2m conversion tool development is in progress with the aim of increasing its efficiency. Meantime the

conversion tool is ready to help in migration projects as solid stabile version. Any bug reported will be fixed ASAP.

Punch lists or any idea for tool improvement are appreciated much. It is possible to adapt the conversion tool for

your project specific needs or for other libraries, see “List of supported PC elements” chapter.

Guarantee of Service quality, Warranty

Herman-Automation warrants that, for any paid Conversion , for PC elements supported only, the Conversion will

produce control logic equivalent to the original control logic from Input files (Equivalent logic means that converted

logic is producing the same outputs as original logic if both control logics are working with the same inputs).

The warranty does not apply to the free Conversion.

Automated conversion Workflow

1. Create your account at Converter web site

2. Check and adjust your preferred settings e.g. select Libraries to be used, Page layout, local/globar

preference, code optimization settings...

3. Create new Project

4. Create new PLC. PLC name must be unique within one Project. You can use PLC name from your Advant

engineering PC FCB.

5. Upload PC source files *.AAX and DB export file *.DBT from FCB (use File -> Export DB section… and

confirm default settings). Only one DBT files should be uploaded containing the export of the whole DB

part. All AAX files should be uploaded prior to the first conversion of particular PLC.

6. Select AAX file(s) for analysis and click Analyse button. All AAX files can be selected and analyzed at

once. Converter parses selected AAX files and calculates number of convertable function blocks.

7. Check and adjust suggested Control Module names and Tab names in Conversion queue table. It is

highly recommended to change Tab names to appropriate names like plant part abbreviation. Merge

several code blocks by means of entering the same Tab name. Rule of thumb: Less Tabs = lower AC800M

CPU load and faster opening/saving of CM editor.

8. Convert: Select code blocks in Conversion queue table and Click Convert button. It is recommended to

convert one PC program at a time (one output TXT file per one PC program). Do not convert only part of

PC program because some variables may remain unconnected. Alternatively click on PC program header

line in Conversion queue to fold/unfold PC prg.

Convert automatically generated file LAST9901.AAX as the last one. That file contains all IO function

blocks, which are not connected in PC programs.

9. Select limited conversion for free or full conversion if you would like to (demanded). This selection has

no meaning meantime since conversion tool is free.

10. After selection of the full or demo conversion, popup "Conversion status" appears and displays the

progress of conversion.

11. Conversion takes from several seconds to several minutes depending of AAX Advant code complexity

12. Download converted text file, which contains all converted Control Modules and data types in text XML

format ready to import to your 800xA system.

13. Adjust selections in the header of the Import VBS script.

14. Import converted text file to the 800xA system by means of VB script (available in Download section)

15. Define global variables in the Application using imported data types like IO,DAT, AIS, DIS, AIC, AOC,...

Post-conversion Phase 1

is defined as manual programming after automated Conversion, in order to fix all unconverted parts of Output

files and to get converted programs ready to download to AC800M controller, including following activities:

 Visual checking of imported code page by page according original logic

 fixing all Placeholders in converted Output (Placeholder replacement by appropriate Function blok of

AC800M)

 fixing all red connections between Function blocks. Converted code may contain red connections, be-

cause special DB hidden terminals or terminals SELECTED were used in original logic.

 fixing all Code loop errors during compilation in Control Builder M (only if SCM:s are used)

 assigning Tasks to Converted code in Control Builder M

 defining communication between other controllers as replacement of DS and DSP communication blocks

 Downloading project to the Softcontroller

Post-conversion Phase 2

is defined as configuration in Control Builder/Engineering workplace in Customer’s 800xA system in order to:

 to set up Coldretain values into Pulp&Paper function blocks in Control Builder M online

 to build hardware definition of AC800M and all its hardware components

 to setup IO variables to IO cards, in Control Builder M

 to configure texts of Sequence steps in 800xA Engineering workplace

 to configure interlock texts of Valves and Motors in 800xA Engineering workplace

 to download converted code into AC800M CPU and to optimize CPU load and Tasks

 to perform FAT test with Customer / end-user

 Commissioning of converted code

Herman-Automation can take over responsibility for post-conversion activities and can provide Post-conversion

Service including whole or part of Post-conversion activities defined above, according Purchase Order from

Customer.

List of supported PC elements

Ampl2m conversion tool supports now almost 100 PC elements, which are the most frequently used in the control

logic of Advant controllers. Following table explains how particular Libraries are utilized in the converted applications.

Conversion tool is improving and number of supported PC elements is increasing after each project.

PC element

Selection
Basic/User Libraries

Selection
PP Library

AND Basic Lib
OR Basic Lib

TON Basic Lib

TON-RET Basic Lib

MONO Basic Lib PP Lib

MOVE User_Lib PP Lib

MOVE-A User_Lib

OR-A Basic Lib

INV Basic Lib

STEP Basic Lib

CONV Basic Lib

SR Basic Lib

FUNCM N/A N/A

TRIGG Basic Lib

SR-AO Basic Lib

SW-C Basic Lib / User_Lib (T) PP Lib

TOFF Basic Lib

MUL Basic Lib

SUB Basic Lib

SR-OO Basic Lib

COMP-R User_Lib PP Lib

AND-O Basic Lib

DIV Basic Lib

BLOCK Basic Lib

INT ControlSimpleLib PP Lib

ADD Basic Lib

REG-RET User_Lib

COUNT Basic Lib PP Lib

CONV-BI Basic Lib PP Lib

LIM-N Basic Lib PP Lib

COMP-I Basic Lib PP Lib

REG User_Lib PP Lib / User_Lib

MUXA-I User_Lib PP Lib

THRESH-L Basic Lib PP Lib

COMP Basic Lib

OSC-B Basic Lib PP Lib

SR-AA Basic Lib

CONV-IB Basic Lib PP Lib

MUX-N Basic Lib PP Lib

MUX-MN Basic Lib, User_Lib PP Lib / User_Lib

COUNT-L Basic Lib PP Lib

SR-D User_Lib PP Lib

MUX-I Basic Lib PP Lib

MUX-MI User_Lib PP Lib

DATE Basic Lib

TIME Basic Lib

SW Basic Lib PP Lib

ABS Basic Lib

REPORT User_Lib

FILT-1P User_Lib PP Lib

CON-PU1 User_Lib Con-Pu1(0) PP Lib Con-Pu1(1)

PB-R User_Lib

SR-OA Basic Lib

MAJ-R User_Lib

MUXGR-MI User_Lib

PB-S User_Lib

XOR Basic Lib

SQRT Basic Lib

ADD-MR Basic Lib PP Lib

ADD-MR1 Basic Lib

FIFO PP Lib

DEMUX-MI PP Lib

DER PP Lib

FILT-2P PP Lib

REG-G User_Lib PP Lib

FUNG-1V User_Lib PP Lib

FUNG-T User_Lib PP Lib

MAX Basic Lib PP Lib

MIN Basic Lib PP Lib

PI ControlSimpleLib PP Lib

PDP User_Lib User_Lib

RAMP ControlSimpleLib PP Lib

RAMP-S1 User_Lib User_Lib

TIMER User_Lib PP Lib

MANSTN PP Lib

MOTCON PP Lib

VALVECON PP Lib

PIDCON PP Lib

PIDCONA PP Lib

SEQ only SFC PP Lib, SFC

STEP only SFC PP Lib, SFC

DIV-MR Basic Lib

TEXT User_Lib

RATIOSTN PP Lib

EXP Basic Lib

LN Basic Lib

BGET Basic Lib

BSET User_Lib

IIL User_Lib

ILI User_Lib

DRTRA (APC) User_Lib

Developed by: Kamil Herman, Slovakia

contact: kamil.herman@herman-automation.com

ABB AC450 and 800xA Specialist Providing a range of Control System design, programming, migrating and

commissioning services. We are ready to deliver the complete migrated control software in status „Ready for

FAT“ or „Ready for Commissioning“.

